
Geode: A Framework for Social and Context-Driven
Browsing for Personal Multimedia

Stewart Greenhill and Svetha Venkatesh
Department of Computing, Curtin University of Technology

stewartg@cs.curtin.edu.au, svetha@cs.curtin.edu.au

ABSTRACT
We present a system that harvests readily available context
information (GPS, bluetooth, user) when multiple media
such as photos, video, audio, or activity streams (eg. from
Twitter, Facebook, etc.) are acquired through cell phones
and uses it for multimedia navigation, search and sharing.
Separate context streams are recorded on the phone, and
related to media captured (on the phone or other devices)
based on recorded time. Our framework integrates and uni-
fies all time-based media and uses contextual meta-data to
construct novel, rich browsers, facilitating the sharing of
both data and meta-data across users. This includes loca-
tion, co-presence and activity, which are used in new ways
for navigation and search in the aggregated media. By con-
sidering the meta-data tuple {media, place, time, activities,
friends}, rich queries can be made by selecting subsets of
available meta-data. Further, synchronous media streams
can be played back in parallel, allowing of media aggrega-
tion in novel ways. Our implementation and experiments
demonstrate the efficacy of this paradigm.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.5.2 [Information Interfaces and
Presentation]: User Interfaces

General Terms
Algorithms, Measurement, Design, Experimentation

Keywords
multimedia browser, personal media management, social con-
text, photo, video, audio, filter, query, cluster.

1. INTRODUCTION
With the diversity in both the type of media, and the

situations in which it is captured, comes the problems of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’08, October 27–November 1, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

management and search. Media can be collected using differ-
ent devices, such as video or phone cameras. These devices
store data in different formats, and captured files must be
offloaded from the devices into a file repository which needs
to be organised in some way. This has led to the develop-
ment of photo management applications (eg. PhotoMesa,
ACDSee, ProShow, iPhoto and Picassa) which allow photo
collections to be organised and navigated in different ways.
Many such systems require meta-data to be added manually
by the user.

In addition to personal search and retrieval, it is becoming
increasingly important to be able to share material with
others. This means that the media must be accessible not
just to the creator, but to others as well. Sites like YouTube
and Flickr are good at disseminating material to a wide
audience, but they rely heavily on meta-data such as tags
and descriptions for findability. These online sites tend to
focus on just one type of media, so if someone has a variety
of interests they end up with fragmented profiles and social
networks on each site. In order to share with particular
people (rather than with everyone), those people need to
be on the site too. Each site only knows about one facet
of our experience, so we lose the ability to find or make
relationships between different types of media.

In this paper we explore the harvesting of “free” meta-
data to span the gap of fragmentation both across media
and users to create the next generation of “social multimedia
browsers”. Free meta-data comes when media is collected on
cell-phones and may include location based on cell tower ID
(coarse) or GPS (fine resolution), and co-presence informa-
tion, derivable from Bluetooth. Activity information comes
from social applications like Twitter, Facebook and Gmail
where people communicate their activity or status on-line
and in real-time. Our work goes beyond using this informa-
tion for geo-tagging and presence sharing, and investigates
its potential for media navigation. Open problems include
a) How can context be used for navigation and organisation?
b) How can we integrate different media repositories for sin-
gle and multiple users into one framework? c)How can we
propagate context between users?

Addressing these open issues, this work describes “Geode”,
a system for organising and sharing personal media. It con-
sists of two applications: a logger and a browser. The logger
runs on a cell phone, collecting contextual information about
a users activity. The browser runs on a personal computer,
allowing media to be organised and navigated. We provide
a framework to handle different types of media such as pho-
tos, audio, video, location, and activity. We harvest time

meta-data across media either directly (via EXIF meta-data
of photos, or activity time-stamps for Twitter), or indirectly
(file time for video and audio), and create a coherent tempo-
ral stream. All the collected meta-data is synchronised with
media, integrating multiple users and media in one frame-
work and we exploit relationships between different media
types to improve search and navigation. Our framework
provides a rich application for personal media management
that:

1. Has a consistent approach to handling all time-based
media.

2. Uses meta-data collected automatically from the users
cell-phone to enrich the interpretation of media. This
includes location, co-presence and activity, which are
used in novel ways for navigation and search.

3. Allows media to be aggregated, so that synchronous
media streams can be played back in parallel.

4. Exploits opportunities for fusion between media streams.
For example, spatial and temporal patterns of media
distribution can be seen as evidence of places or events,
which are significant for browsing and navigation.

5. Delivers a rich browsing experience.

6. Supports sharing of both data and meta-data between
users.

We implement the logger and browser and demonstrate
our results using a centralised store of data from 8 users.
We used Nokia GPS phones to collect context. Phones
and other devices were used to collect photos, videos, au-
dio and activity (via Twitter). Bluetooth is used to indicate
user co-presence. Both location and co-presence meta-data
are propagated across users. Clustering is used to identify
places(using GPS and user) and events (using place,users
and time). These events and places are used to deliver rich
browsing experiences. Our results demonstrate the useful-
ness and power of this paradigm. We note that although
we have implemented a centralised version, the framework
can implemented in a distributed way, allowing each user
to maintain their repository separately, yet giving them the
power of shared media and context.

The significance of our approach lies in the richness of
browsing that is achievable. By considering the meta-data
tuple {media,place,time,activities,friends}, rich queries can
be made by selecting subsets of available meta-data. Exam-
ples include;

1. What did my friends do on the weekend? (User, Time
→ Place, Media, Activity)

2. What do people do in place X? (Place → Media, Ac-
tivity)

3. What does this place sound like? (Place → Media,
Place)

4. Where do people do activity A? (Activity → Place)

The novelty of the framework lies in departing from the
paradigm in browsing that relies on browsers dealing with
single media at a time for single users. Our cohesive frame-
work, integrating multiple media types and multiple users,

transcends the gap required to deliver shared multi-media
browsing experiences by effectively harvesting context. Fur-
ther, the joint use of shared context and multiple media
across users enables the synchronisation of media from mul-
tiple users to give composite perspective of places and events.
For example, audio from one user can be automatically fused
with photos from another user to produce an ad-hoc video.

2. RELATED WORK
Digital cameras make it easier than ever to capture mo-

ments of our lives. [7] examined the different requirements
of users, and identified applications in four classes: archiv-
ing, sending, co-present sharing, and remote sharing. Digital
photo management applications fall in the first category, be-
ing systems for retrieving images from storage. [18] found
that the two most important features of these applications
are sorting into chronological order, and displaying a large
number of thumbnails at once. People are familiar with their
own photographs, so this is usually enough to allow them to
find what they are looking for. The availability of indexing
and text-based search did not motivate users to use these
features.

This situation changes when photos are shared. [14] ex-
plored the behaviours that have developed around on-line
photo sharing sites like Flickr. They identify two main
groups: the “Kodak Culture” who share narratives in the
home around events like birthdays, and the “Snaprs” who
frequently share with others via on-line forums. In both
camps, chronology was found to be a key strategy for or-
ganising photos, though most organised their material by
event. Snaprs regularly tagged their photos, seeing this as
a form of social interaction.

With the burgeoning of on-line social media and “web 2.0”
user-contributed content is accompanied by meta-data such
as tags, titles and descriptions, all of which are essential for
items to be discoverable by other users. The incentive to
add this data is the potential for increased “hits” and social
interactions around the contributed media. In August 2006,
Flickr introduced geo-tagging and YouTube followed suit in
June 2007. This means that appropriately tagged media can
be located via temporal or spatial criteria, although there is
currently no way to perform searches across multiple sites.

Research into media management applications has focused
on ways to filter, relate and browse images based on criteria
that can be deduced from data. PhotoMesa [2] provides a
zoomable interface to large collections of photographs. It
clusters photographs using an existing directory hierarchy,
and uses quantum treemaps to tile images for display in a
way that visually preserves the grouping. Other applications
have focused on extracting clusters from variations in time,
location, or image content. If a cluster can be summarised
by a representative subset of images this helps reduce the
clutter in displays of large sets of images.

Different methods are used to cluster based on time. Look-
ing at the duration between images, these attempt to iden-
tify inter-event gaps using measures like frequency distribu-
tion [8], log gap average [16] or similarity [3]. Other factors
can be included in the clustering, such as location [15], and
image content [13].

Media browsers can use temporal clusters in different ways.
The Calendar Browser [8] implements hierarchical cluster-
ing, which allows users to progressively “drill down” into
sub-events of finer resolution via a tree view or calendar

view. PhotoCompas [15] extends this approach to include
hierarchical location clusters which can be browsed on a
map, or via automatically generated place names. The Pho-
toTOC [16] browser shows the complete set of images in a
“detail” pane, and a set of clusters in an “overview” pane.
Clicking on the overview scrolls the detail pane to the rel-
evant image. It chooses photos to represent clusters using
the KL divergence between the histograms of each image in
the cluster and the averaged histogram over all images in
the cluster. [20] uses a similar event clustering algorithm
but adds a PhotoMesa-inspired treemap view and use torso
analysis to help identify photos containing the same peo-
ple based on their clothing. MediAssist [10] uses location
and content-based ranking to find images similar to a se-
lected image. Socio-Graph [1] is a multi-user browser which
infers social context from location logs and persistent au-
dio records. In addition to temporal events and 3D spatial
browsing, it allows selection of images based on social rela-
tionship.

A common theme for many of these applications is to
simplify the “top-down” search process: to make it easier
to find a particular image starting from a large collection.
As was identified by [18], this is important for users locating
items in their own collections of media. While acknowl-
edging this requirement, we explore other ways of browsing
that suit multi-user image archives. In this work, we are
also interested in implementing “bottom-up” navigation of
media collections. Given an image which may be discovered
serendipitously, we want to be able to find related images
that can serve to reveal the context around that image (eg.
What was the event? Who else was there, and what did
they see?). We aim to enable a web of media which can be
navigated like a web of documents. Clusters, however they
are deduced, provide links between an image and other im-
ages which can also be used for navigating a bottom-up view
of a repository.

Many on-line applications exist around data collected on
mobile phones. Moblogging is the practice of blogging via
mobile phone. Moblogs tend to focus around images, as
these are easier to capture than text. Applications like
ShoZu (shozu.com) can be used to automatically upload me-
dia captured on phones to sharing sites (eg. Flickr, YouTube),
or to blogs (eg. Blogger, LiveJournal, Wordpress). When
ShoZu detects a new photo or video it prompts for descrip-
tions and tags before uploading to a selected web-site; it can
also include geo-tags if the phone is GPS-enabled. Some
systems provide novel ways to organise and browse media.
Glogger [12] implements storyboards and panoramas, and
MobShare [19] includes parallel time-line views. Mobile ap-
plications focus on immediacy, uploading data directly from
the phone over the cellular network. Video streaming from
phones is also possible using applications like Qik (qik.com).

The ContextPhone [17] platform senses and responds to
the user’s activity. The system measures location (via cell
tower id, or GPS), nearby bluetooth devices, communication
(eg. phone calls, SMS), and application usage generating log
files that can be archived over the cellular network. A set of
customised applications runs on the phone to adaptively use
this information. For example, ContextContacts replaces
the normal Contacts application with a version that lists
additional information such as the contact’s location, the
number of friends and other people nearby, and whether the
phone speaker is on or off. This is intended to help the user

decide whether to call now or later.
ContextPhone and runs on Symbian V1 and V2 phones,

though it does not to support modern V3 phones. The sys-
tem has been developed commercially by Jaiku (jaiku.com)
which provides “presence sharing” services. Users can share
availability (based on ring profile), location (based on cell
tower ID), co-presence (based on bluetooth devices) and
calendar events with the public, or with selected contacts.
Users can label their location, which allows cell tower IDs to
be collaboratively mapped to place names. Users can also
declare what they are doing by posting “jaikus” which are
received by their contacts like an instant message.

Several research groups have used the ContextPhone plat-
form. The Reality Mining project at MIT Media Lab used
context logs to measure the strength and dynamics of social
networks [5]. Communication, location and proximity were
used to deduce the type and strength of social ties. The
Garage Cinema Group at University of California Berke-
ley used context data to facilitate photo sharing [4]. The
MMM2 system uses bluetooth proximity information to help
a user decide who a photo should be shared with. Merkitys
(meaning.3xi.org) allows context data (location, bluetooth
environment) to be added as tags when images are uploaded
to Flickr.

Whilst applications exist for streaming and uploading me-
dia from phones to the web, their use of context is limited
to what can be done at the time of upload (eg. adding tags,
or deciding who to share with). In contrast, our application
stores context streams so they can be used by our browser
to improve search and navigation.

3. DATA COLLECTION
This work aims to support the collection of context as well

as media. Many devices exist for media capture : Digital still
cameras, video cameras, and audio recorders. Modern cam-
era phones offer multimedia recording facilities, although
this is often targeted to low bit-rate encodings suitable for
cellular networks. Multimedia phones like the Nokia N95
have high quality cameras and optics, and are capable of
high quality video recording. For example, the Nokia N95
has a 5 megapixel camera and can record 640x480 resolution
video at 30fps, with audio up to 48Khz. Phones are increas-
ingly fitted with a range of sensors like GPS and bluetooth,
and their programmability makes them an ideal device for
both context sensing and media capture.

Our aim is to provide a platform that works across a wide
range of media capture devices. We use phones for record-
ing context, but we also allow devices like video cameras
and digital still cameras. This means that we can’t just
embed context tags at capture time. We need to record sep-
arate context streams and relate context to media based on
recorded time.

For this study we targeted the Nokia 6110 phone, a mid-
range multimedia phone running the Symbian S60 V3 op-
erating system. These phones have a 2 megapixel camera,
bluetooth, an inbuilt GPS and navigation application. Each
phone was installed with a 4Gb micro-SD card for media
recording. We wrote a J2ME MIDP 2.0 logging application
(called “rover”) which runs on the phone to record user
activity.

The rover application runs as a background task on the
phone, collecting GPS positions, bluetooth contacts, cal-
endar events and activity reports. The main limitation is

power consumption: with the GPS active the phone con-
sumes about 120mA which gives less than 7 hours battery
life. Rather than sampling continuously, we record position
every 10 minutes, switching the GPS off between samples.
A “fast sampling” option records position continuously, but
reverts to “slow sampling” if a GPS fix cannot be obtained
(eg. if the user is inside a building). In this way it is usu-
ally possible to run the logger continuously, recharging the
phone once a day.

An important parameter for this approach is the GPS
“time-out”: how long we attempt to sample position before
giving up. When users are outdoors the ephemeris data
for all satellites is known and a “hot start” takes only a
second or two. Whilst indoors, satellites are not visible so
GPS positioning is usually not possible. However, we need
to allow enough time to facilitate a “warm” or “cold start”
when we are next outdoors. Setting the time-out too short
means that a “cold start” will fail, but longer times cost
more battery life. In practice we found about 2 minutes
to be sufficient. If the user has a GPRS facility with their
phone plan, Assisted GPS (A-GPS) dramatically reduces
the start time but this is at the cost of 5 to 10kb of traffic
every half hour or so.

Bluetooth scanning is comparatively simple. A bluetooth
device discovery enquiry uses 30mA for around 15 seconds,
so its impact on overall power consumption is small. For
each discovered device we log address, name, and device
class. We scan for bluetooth devices every 2 minutes; these
scans are synchronised with the GPS samples. We call the
combination of location and co-presence the users’ physi-
cal context. This is sampled passively (location every 10
minutes, co-presence every 2 minutes) but is also actively
sampled when events such as media creation are detected.

We explored the use of the inbuilt mobile media API
(JSR-135, aka MMAPI) but found it too restrictive for use.
When recording stream-based media like audio and video,
the Nokia implementation records first to the phone’s inter-
nal memory, only copying it to the final destination once the
recording has finished. This limits the size of collected me-
dia to about 20-30Mb, regardless of the amount of storage
available on the device. In addition, the MMAPI does not
allow the use of higher quality media formats. For example,
the inbuilt camera application allows video to be recorded
in MP4 format, but the MMAPI only supports the inferior
quality 3GPP format.

Given these constraints, we decided that the users should
capture media via the inbuilt applications, rather than me-
diating the capture via rover. Instead rover periodically
monitors the file system to detect new media files. When it
discovers a new media object, it activates the GPS to sam-
ple position, and initiates a bluetooth enquiry. The standard
applications include a camera which captures still images up
to 1600x1200 pixels. It records MP4 video for up to 1 hour
at a time at 320x240. The voice recorder supports 16-bit
8KHz recordings with durations up to 1 hour. We also ran
this application on Nokia N95 phones, which provide simi-
lar functionality but capture media with significantly better
quality.

Activity streams consist of short status reports, origi-
nating from social applications like Twitter and Facebook.
Twitter (twitter.com) invites users to keep in touch with
friends by frequently answer the question “What are you
doing?”. Depending on the community, the main uses of

Twitter are: daily chatter, conversations, sharing informa-
tion/URLs, and reporting news [9]. We don’t attempt to
distinguish these uses, but suggest that posts from a mobile
phone are more likely to reflect current activity. rover in-
cludes a simple Twitter client, allowing users to say what
they are doing at any time. It samples physical context for
each status report, recording each “tweet” to a log file as
well as optionally posting to twitter.com. In addition, we
can import Twitter streams from the web, although physical
context may not be available unless tweets were posted via
rover.

The result of the logging process is that the user’s position
is sampled sparsely, but the locations of media objects are
still known with reasonable precision.

To collect data from the phones, we simply copied the
relevant media directories to a host PC via USB. With ap-
propriate infrastructure, this data could be automatically
retrieved wirelessly. Some of our devices (ie. the N95) had
WiFi capability, but the majority had only bluetooth. De-
pending on data volume, it is possible that a daily connec-
tion with a host PC might be sufficient to transfer collected
media.

4. DATA ANALYSIS
Geode users import data into a media repository by nom-

inating folders containing media files. The system recur-
sively scans folders, extracting basic data from the files.
For images it gathers the size, creation time, and thumb-
nail, which are normally available in EXIF data. For video
and audio files there are no standards for embedding meta-
data. Geode computes start time and duration from the
file modification time and media stream duration. If nec-
essary, time corrections can be applied to the file times or
EXIF times for particular media folders. This allows us to
handle errors in time setting, or offsets due to factors like
timezone or daylight savings. At the end of this process,
Geode knows the temporal extent of every media object.
In addition, Geode scans all rover log files to extract po-
sition, co-presence and activity information. Activities are
treated as media objects (time-stamped text descriptions).
All media objects (photo, video, audio, activity) are then
compared to the GPS stream to attempt to geo-locate each
object. Where possible, location and co-presence is propa-
gated between users. This helps deal with the vagaries of
wireless reception, which sometimes result in GPS and blue-
tooth visibility being different for users at the same location.
It also allows location to be available to users without GPS
(eg. if they are with a user with a GPS phone).

For each user, Geode builds an index to media repository.
At the simplest level this can be used to browse and navi-
gate the media, as can be done with applications like Picassa
and iPhoto. Geode also attempts to derive additional lay-
ers of meta-data by clustering over time and location across
the basic media streams. When multiple users exist, each
repository contains separate streams of contextual informa-
tion. Ultimately, this information will be shared between
distributed Geode instances via a network, but for the mo-
ment we are exploring the possibilities of this scenario with
data hosted on a single machine.

The system uses clustering to attempt to identify events
and places. Events are deduced by clustering over the media
creation times. Often photos appear in bursts, as the user
captures different aspects of a scene over time. We imple-

mented hierarchical event clustering based on the method
of [8]. Starting with an initial time difference of 4 hours we
derive an initial set of clusters which is then further refined
by searching for outliers. We compute the time differences
between all photos within a cluster then find the bound-
ary points Q1 and Q3 for the first and third quartiles of
the distribution. An outlier is any difference greater than
Q3 + 2.5 ∗ (Q3 − Q1), where 2.5 is an empirically selected
value. Outliers are used hierarchically partition clusters into
sub-clusters.

Events are used by the system to simplify summaries of
user activity. A cluster of images can be replaced with a
single image which can optionally be expanded to show the
original set. Events are also used as a “coarse” scale at
which to navigate a user’s media stream. Lastly, events are
used to find objects related to a particular media object.

Places are regions where users spend time or perform ac-
tivities. The system uses them in two ways. Firstly, if a
media object can be associated with a place, it can easily be
linked to other objects at that place. In the browser, this
corresponds to the operation “Find Other Objects Here”. In
this sense it is important that the place is a symbolic object
rather than an arbitrary positioning of an area on a map,
because we want this operation to be free of user interaction.

Secondly, places are used to simplify the display of ob-
jects on maps. If we attempt to display all objects at their
location the display quickly becomes cluttered, and objects
become obscured by other objects at the same location. In-
stead, we display a marker indicating the number of objects
at the place. The user can “mouse over” the marker to see
a representative set of these objects. This clustering can
be done hierarchically with increasing granularity so that
low-level clusters merge as the user zooms out on the map
display.

Geode implements spatial clustering using DBSCAN[6],
a density-based clustering algorithm. Advantages of DB-
SCAN are that it (a) discovers clusters of arbitrary shape,
(b) requires minimal assumptions about the data, and (c)
works efficiently on large data sets. DBSCAN requires the
specification of two parameters: ε, the threshold for neigh-
bourhood reachability, and D, the minimum number of points
per cluster. We derive places by clustering over the location
of media collected by all users. We found that ε = 100m
works well for our data, but note that this assumes “urban-
scale” activity which might not be appropriate in all scenar-
ios (eg. world travel). These situations would require either
a hierarchical approach (clustering at multiple scales of ε),
or use of variable-density [11].

Events and Places offer a wealth of browsing possibilities.
For example:

1. What did my friends to on the weekend? Given a time,
and a set of people, find the places they visited and any
associated media.

2. What do people do in place X? Given a place, find the
media and activities at this place.

3. What does this place {look,sound} like? Given a place,
find the corresponding images, video, or audio objects.

4. Where do people do activity X? Given an activity,
find the places where people recorded this activity (eg.
having coffee).

5. Find other images here. Given an image with a known
place, find other images of the same place.

6. What happens here? Given an image, find activities
that occur at that place.

7. Find who was here. Given an image, find the people
who were co-present at the time.

8. Find images of X from others. Given a person, find
all images from other people for which they were co-
present. Often this will include images of that person.

5. EXPERIMENTS
We conducted a trial of the system with seven partici-

pants. Each participant carried a bluetooth-enabled GPS
phone: 6 Nokia 6110s and 1 Nokia N95. Four phones were
used online with GPRS, one phone was used online without
GPRS, and two phones were used off-line (ie. without a cel-
lular network connection). At the time of writing durations
range between 1 and 5 months. Over this time, participants
collected 2270 images, 226 videos, and 56 audio files. Other
media capture devices were used including digital cameras,
video cameras, and audio recorders. Each user contributed
their media files to a central file store managed by Geode.

See section 3 for details of the data collection, and section
4 for analysis.

We developed a browser in parallel with the data collec-
tion and analysis. Our aim was to have the browsing and
visualisation evolve organically around interactions and fea-
tures we saw in the data.

5.1 Implementation
Geode is implemented in Java and uses the Java Media

Framework (JMF) for media access and display. JMF is a
flexible multimedia platform, but has been rightly criticised
for its narrow range of supported media formats. A small set
of formats is implemented in Java, but it relies on “perfor-
mance packs” to use native codecs, giving poor portability
across platforms. We use the FOBS plugins (fobs.sf.net)
which address this problem by implementing a JMF inter-
face to the ffmpeg platform (ffmpeg.mplayerhq.hu), support-
ing a diverse range of codecs, formats and media transport
across many platforms (Windows, Macintosh, Unix).

Media repositories are stored separate from the source
media files. For each user, the repository includes a me-
dia index, thumbnail database (rendered or extracted from
original files), a location log, a log of bluetooth contacts, and
a temporal and spatial cluster index. These are stored using
a mixture of plain-text and binary files, but could easily be
stored in a relational database if required. The system works
well for moderately sized repositories (eg. the author’s own
media library of around 15,000 objects: 20Gb photos, and
50Gb video).

The map viewer retrieves maps from tile servers over HTTP.
Maps are available from many providers including NASA,
Yahoo, Microsoft and Google. Geode maintains its own per-
sistent local cache of map tiles, so once the system has been
primed the network load for map browsing is very low. The
cache also allows the map browser to be used off-line.

6. RESULTS
This section describes the design of the browser and il-

lustrates novel features with examples from our data. This

includes synchronised playback (6.3), event browsing (6.4)
and contextual navigation (6.5).

6.1 Browser
The browser fulfils several roles: It allows a user to browse

and retrieve their own media via meaningful concepts like
time, event and place. It provides a visual diary that relates
media and activities. It allows exploration of other users’
media. It discovers and highlights relationships with other
users. Lastly, it allows users to explore events by browsing
multiple media streams synchronously.

Figure 1 shows an example of the user interface, which
consists of several interlinked displays. The display is di-
vided into regions using resizable dividers. The right-hand
side is for query and selection and includes filters and the
“time-strip”. The left-hand side is the player, including the
media viewer and time-line.

It works like this:

1. To search for particular events, users can specify con-
straints via filters on time, place, people, and media.

2. The filters select a set of media objects which are pre-
sented in the time-strip. This is a chronologically or-
dered sequence of thumbnail images, intermixed with
activity descriptions. We can choose to see all media,
or see clusters of media corresponding to events. Items
can be selected from the time-strip for display in the
media viewer.

3. The media viewer renders multiple media objects, each
in its own frame of a tiled display. Each frame provides
navigation to contextually related media, and can be
used to explore interrelated items.

4. The time-line allows multiple media streams to be played
back synchronously. This means that an event can be
observed from multiple perspectives if there were mul-
tiple observers present.

The “time-strip” component (Figure 1, bottom right) sum-
marises all existing media objects using small low-resolution
thumbnail images1. Media are ordered chronologically, with
a header showing the date for each new day. For visual
media (images, video) the thumbnail is extracted from the
media file. For text objects, the text is rendered in-line.
Other objects (eg. audio) are shown using icons. Click-
ing in the time-strip toggles selection of the object for me-
dia viewing. Figure 5 shows a time-strip with examples of
photos, audio and video clips interspersed with tweets from
users. Icons superimposed over the thumbnails indicate me-

dia type: video , audio , and geo-tag . To produce
a summary or narrative view, time-strips can optionally be
displayed with event clustering (see 6.4).

The filters component (Figure 1, top right) provides sev-
eral different ways of filtering media for selection. This in-
cludes media type, creator, time and place (see 6.2). The
results of multiple filters are applied the time-strip display,
and to media displayed for contextual navigation (see 6.5).
The filters pane may optionally be hidden, maximising space
available for the time-strip.

1Time-strips extend the traditional “filmstrip” metaphor by
incorporating multiple visual and non-visual media in one
chronological display.

The media viewer (Figure 1, top left) renders one or more
media objects in a tiled display. The tiling adapts automat-
ically as the the number of selected objects changes. Time-
based media (audio, video) are rendered using JMF players.
Multiple video/audio streams can be rendered in parallel.
The system handles this situation in one of two ways. In
free mode each object has an independent time-base allow-
ing non-synchronous objects to be played in parallel. This
is useful for producing photo or video montages. In linked
mode, the time-bases of displayed objects are synchronised
to a master clock which is controlled by absolute time.

The time-line (Figure 1, bottom left) shows the times at
which media exist in the repository. This can be displayed
either in absolute time or relative time (a representation that
preserves duration of media, but removes the gaps where no
media exist). A cursor in the time-line view is synchronised
with the playback time in the media view.

6.2 Filters
A filter is a Geode component that selects media based

on criteria that the user defines. Filters are arranged in a
sequence with the first taking the set of all media as its in-
put, and the last passing its output to the time-strip display
(see Figure 2(c)). Some filters (eg. time, place) display their
input in different ways as part of the user interaction. These
filters tend to be placed downstream, although any ordering
is allowed.

• Media filter selects media by criteria such as type (photo,
audio, video, activity) and constraints like duration
and keywords in text. Optionally, objects in the same
event cluster can be selected too.

• People filter selects media created by a given set of
people.

• Time filter selects media by creation time. A calendar
can be used to select specific days of interest. It dis-
plays one thumbnail image from its input for each day
(see Figure 2(a)).

• Place filter selects media by location. Clusters of me-
dia objects are displayed on a map. The user can select
groups of clusters using the mouse, or by defining ge-
ometric regions. In Figure 2(b), selected clusters are
shown in green.

Note that the algorithm used to cluster media for map
display is different from the place clustering algorithm men-
tioned in 4. This is because we want to show the actual
distribution of samples in a way that quickly adapts with
changes in zoom level, so a quick but granular display is
preferred. Each dot in the map display is labelled with the
number of objects at that place.

These filters can be combined to answer a variety of ques-
tions. For example:
What did my friends do on the weekend. Select friends and
time of interest using the the People and Time filters. This
shows all of the relevant activity in the time-strip. The Place
filter shows the corresponding locations, and can be used to
focus on media related to a particular location.
Where do people go for coffee? Use the Media filter to select
just Activity, then enter the keyword “coffee”. Select “In-
clude Event”. This selects all media in events that include
the activity “coffee”. These locations appear on the map in
the Place filter.

to select multiple items for display

in media viewer.

Filters
Allows users to select media based

based on criteria like media type,

place, and time.

Media Viewer
Displays multiple photos and

videos selected via the time−

strip, or time−line

Contextual links allow

navigation to related media

items based on place, time,

and co−present users

Time−line
Controls presentation time

and synchronises streams

displayed in media viewer

Time−strip

Shows thumbnail views of photos,

videos, audio and activity in

chronological order. Allows users

Figure 1: Browser layout showing spatial filter (top right), time-strip (bottom right), media view (top left)
and time-line (bottom left). The display shows two perspectives of an event taken by different observers.
The images from video and photo streams are synchronised via the media view time-line.

*

Media People Time

*

Time Strip

Time Line

*

Place

Viewer

Filters

**

(a) Time Filter (b) Place filter (c) Propagation of selection.

Figure 2: (a) and (b) show examples of Geode filter interfaces. (c) Shows the propagation of selection through
filters to viewer. Components marked ‘*’ have visual interfaces that present their inputs to the user.

Figure 3: Synchronised media display, with contri-
butions from three users: user 1 contributed the
video (top left), user 2 contributed the photo (bot-
tom left) and user 3 contributed two photos (right).

6.3 Synchronised Playback
In the Geode media viewer, the time-line works like the

familiar seek bar in media players. However, note that the
Geode’s time-line represents a global timebase across the en-
tire media repository. Temporal extents are computed by
Geode in the initial analysis phase so that media objects
can be related in a common time frame.

When we move the cursor in the time-line, Geode dynam-
ically creates JMF players for media objects, synchronising
their time-bases as required. The media view includes em-
bedded players for stream-based media, and rendered images
for other media like photos. By synchronising all media, we
get the impression of a “compound stream”, composed of
contributions of multiple users.

One issue in this type of display is how we deal with ob-
jects that have no inherent duration (eg. photos). We need
to allow photos to persist for a few seconds but also need
to minimise the number of re-tiling operations in the media
player; both rapid flickering and retiling can be disturbing.
One approach is to allow just one image per stream per user
to be displayed, but to have each image persist until the next
one is available. Another option is to display each image in
its own frame for a fixed time-window around its creation
time. The latter approach can increase the level of visual
concurrency at busy times, but results in a less cluttered
display between photo events.

Figure 3 depicts notorious sword-swallower Matty Blade
busking in Fremantle’s Henderson Street mall. The images
are from three separate users, synchronised via Geode’s me-
dia viewer. The top left frame is a video stream, the other
frames represent photos from two other users. The time-

Figure 4: Ad-hoc media fusion in the Geode media
viewer. Audio stream is mixed with another users’
photo-stream using synchronised playback.

line (below) shows the overlapping extents of the video and
photo times. Note the absolute time on the time-base.

One of the users (richard) was not participating in our
trial, so we did not have context logs from his phone. How-
ever, he posted his photos to his Flickr account, which we
imported into Geode. This procedure involved 1) creating
a new user and importing his avatar image, 2) downloading
the original photos from Flickr into the repository, and 3)
defining the bluetooth address of his phone, and 4) defining
a time offset for the imported images. This is sufficient to
have all his photos geo-tagged via propagation of location
information, and synchronisable to media of other users.

One exciting possibility enabled by Geode is the ad-hoc
fusion of media based on synchronism (ie. events occur-
ring at the same time). In this example, an audio stream
recorded at a concert (Crowded House, November 16 2007)
is synchronised with another users photos to create an ad-
hoc audio-video presentation. The audio consists of discrete
clips of roughly 10 minutes each. The images were imported
from a Flickr photo-stream, and are synchronised with the
audio via the Geode media viewer. Both streams are seek-
able in parallel using the time-line without any special pre-
processing.

6.4 Event Browsing
The time-strip can be used to browse many images at

once, but if we want a concise summary of activity over a
day we can use event clustering to simplify the display. In
“event” mode, media in the same temporal cluster is reduced
to one representative image. Controls on the thumbnails

allow the clusters to be opened and closed .
Figure 5 shows how this works. On the left is the raw

time-strip. On the right is the event-clustered time-strip.
On this day, 123 photos were collected by 5 users. This
reduces to just 8 events; User1: shopping, child1 birth-
day party, Earth Hour celebrations, User2: child2 birthday
party, User3: adult party, User4: concert, User5: child3
swimming lessons, playing at the river. One event is shown
with the cluster expanded (including one photo and two
videos). These can be identified by the “close” control in
the bottom right corner.

6.5 Context-based Navigation

a) All media presented sequentially b) Event clusters

Figure 5: Two modes of the time-strip : sequential and event display.

Figure 6: Context display showing the media pro-
ducer (top right) and other people present. The
filmstrip at the bottom shows related images.

Contextual information allows us to answer many mean-
ingful questions about an image: where is this place, who
else was here, and what did they see? Section 4 outlines
examples of relationships that can be established from avail-
able data. Geode exposes these contextual queries via the
image frame in the media view. When the user moves the
mouse over an image frame, contextual data overlays the
image.

Figure 6 shows an example of the context overlay. The
“postage stamp” image in the top right indicates the user
who created the image. The other avatars show other users
that were present, based on either their GPS location, or
bluetooth co-presence. For each user present, the associated

transport controls jump to the previous or next image

by that user, or the previous or next cluster of images.
The filmstrip at the bottom of the image indicates images

or events occurring at the same place. Clicking on an image
replaces the current image tile with the linked image. Clus-
ters can be expanded or collapsed by clicking the open and
close icons in the corner of each thumbnail.

The filmstrip can also be used to display other relation-
ships. For example: other events happening around the
same time as the image (ie. at different places). Clicking on
any of the avatars shows the stream of events for that user
around that time. This shows us what was happening for
other users at that time.

This kind of browsing can often reveal common interests.
For example, while browsing your photos of an event, you
may discover other users who were at the same event, or at
other events at the same venue. By automating the discov-
ery and presentation of contextual relationships, we enable
both purposeful and serendipitous navigation of image col-
lections.

7. CONCLUSION AND FUTURE WORK
We have presented a system that collects contextual in-

formation via mobile phones, and uses it for multimedia
navigation and sharing. We provide search via spatial and
temporal filters, which are used together with a chronologi-

cal time-strip view for the traditional “top-down” navigation
of media collections. We also provide contextual navigation
using co-presence, spatial and temporal clustering. This en-
ables an alternative “bottom-up” navigation that reveals re-
lationships between images as well as exposing the context
of an image (eg. what was the event? who else was there,
and what did they see?).

This work serves to enhance and share personal media
collections. Some of the context analysis algorithms could
be improved or extended. For example, we could implement
joint space-time clustering, or image similarity based on con-
tent features. Other sources of context could be added (eg.
calendar or blog entries), and activity streams could be anal-
ysed for semantics using topic modelling. Future work is also
expected to focus on models for sharing context and media
in a distributed application, and to improve the collection
and interpretation of contextual data.

8. REFERENCES
[1] B. Adams, D.Q. Phung, and S. Venkatesh. Extraction of

social context and application to personal multimedia
exploration. In ACM Int. Conference on Multimedia,
Santa Barbara, USA, Oct. 2006.

[2] Benjamin B. Bederson. Photomesa: a zoomable image
browser using quantum treemaps and bubblemaps. In
UIST ’01: Proceedings of the 14th annual ACM
symposium on User interface software and technology,
pages 71–80, New York, NY, USA, 2001. ACM.

[3] Matthew Cooper, Jonathan Foote, Andreas Girgensohn,
and Lynn Wilcox. Temporal event clustering for digital
photo collections. ACM Trans. Multimedia Comput.
Commun. Appl., 1(3):269–288, 2005.

[4] Marc Davis, Nancy Van House, Jeffrey Towle, Simon King,
Shane Ahern, Carrie Burgener, Dan Perkel, Megan Finn,
Vijay Viswanathan, and Matthew Rothenberg. MMM2:
mobile media metadata for media sharing. In CHI ’05:
CHI ’05 extended abstracts on Human factors in
computing systems, pages 1335–1338, New York, NY, USA,
2005. ACM.

[5] N Eagle, A Pentland, and D Lazer. Inferring social network
structure using mobile phone data, 2007.

[6] M. Ester, H-P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in large
spatial databases with noise. In Proceedings of Second
International Conference on Knowledge Discovery and
Data Mining, pages 226–231, 1994.

[7] David Frohlich, Allan Kuchinsky, Celine Pering, Abbe
Don, and Steven Ariss. Requirements for photoware. In
CSCW ’02: Proceedings of the 2002 ACM conference on
Computer supported cooperative work, pages 166–175, New
York, NY, USA, 2002. ACM.

[8] Adrian Graham, Hector Garcia-Molina, Andreas Paepcke,
and Terry Winograd. Time as essence for photo browsing
through personal digital libraries. In JCDL ’02:
Proceedings of the 2nd ACM/IEEE-CS joint conference on
Digital libraries, pages 326–335, New York, NY, USA,
2002. ACM.

[9] Akshay Java, Xiaodan Song, Tim Finin, and Belle Tseng.
Why we twitter: understanding microblogging usage and
communities. In WebKDD/SNA-KDD ’07: Proceedings of
the 9th WebKDD and 1st SNA-KDD 2007 workshop on
Web mining and social network analysis, pages 56–65, New
York, NY, USA, 2007. ACM.

[10] N O’Hare G Jones, C Gurrin, and A F Smeaton.
Combination of content analysis and context features for
digital photograph retrieval. In in 2nd IEE European
Workshop on the Integration of Knowledge, Semantic and
Digital Media Technologies, 2005.

[11] P Liu, D Zhou, and N Wu. Vdbscan: Varied density based

spatial clustering of applications with noise. In 2007
International Conference on Service Systems and Service
Management, 2007.

[12] S Mann, J Fung, and Raymond Lo. Cyborglogging with
camera phones : Steps toward equiveillance. In ACM
Multimedia 2006, 23-27 October, Santa Barbara, USA,
2006.

[13] Tao Mei, Bin Wang, Xian sheng Hua, He qin Zhou, and
Shipeng Li. Probabilistic multimodality fusion for event
based home photo clustering. ICME, 0:1757–1760, 2006.

[14] Andrew D. Miller and W. Keith Edwards. Give and take: a
study of consumer photo-sharing culture and practice. In
CHI ’07: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 347–356, New York,
NY, USA, 2007. ACM.

[15] Mor Naaman, Yee Jiun Song, Andreas Paepcke, and
Hector Garcia-Molina. Automatic organization for digital
photographs with geographic coordinates. In JCDL ’04:
Proceedings of the 4th ACM/IEEE-CS joint conference on
Digital libraries, pages 53–62, New York, NY, USA, 2004.
ACM.

[16] John C. Platt, Mary Czerwinski, and Brent A. Field.
Phototoc: Automatic clustering for browsing personal
photographs, 2002.

[17] Mika Raento, Antti Oulasvirta, Renaud Petit, and Hannu
Toivonen. Contextphone: A prototyping platform for
context-aware mobile applications. IEEE Pervasive
Computing, 4(2):51–59, 2005.

[18] Kerry Rodden and Kenneth R. Wood. How do people
manage their digital photographs? In CHI ’03: Proceedings
of the SIGCHI conference on Human factors in computing
systems, pages 409–416, New York, NY, USA, 2003. ACM.

[19] Risto Sarvas, Mikko Viikari, Juha Pesonen, and Hanno
Nevanlinna. Mobshare: controlled and immediate sharing
of mobile images. In MULTIMEDIA ’04: Proceedings of
the 12th annual ACM international conference on
Multimedia, pages 724–731, New York, NY, USA, 2004.
ACM.

[20] Bongwon Suh and Benjamin B. Bederson. Semi-automatic
image annotation using event and torso identification.
Technical Report Tech Report HCIL-2004-15, Computer
Science Department, University of Maryland, College Park,
MD, 2004.

	Introduction
	Related Work
	Data Collection
	Data Analysis
	Experiments
	Implementation

	Results
	Browser
	Filters
	Synchronised Playback
	Event Browsing
	Context-based Navigation

	Conclusion and Future Work
	References

